Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

C. Wattanakit, A. Kuhn

Chemistry-A European Journal (2019) in press

The concept of encoding molecular information in bulk metals has been proposed over the past decade. The structure of various types of molecules has been imprinted, including also enantiomers. Typically, to encode metals with chiral information, several approaches, based on chemical and electrochemical concepts, can be used. In this minireview we discuss recent achievements with respect to the development of such materials, including the entrapment of chiral biomolecules in metals, the chiral imprinting of metals, as well as the combination of imprinting with nanostructuring. The features and potential applications of these designer materials, such as chirooptical properties, enantioselective adsorption and separation as well as their use for asymmetric synthesis will be presented. This will illustrate that the development of molecularly encoded metal structures opens up very interesting perspectives, especially in the frame of chiral technologies.

2019 19

Thumbnail J. Kalecki, M. Cieplak, M. Dąbrowski, W. Lisowski, A. Kuhn,  P. Sindhu Sharma ACS Sensors (2019) in press, doi.org/10.1021/acssensors.9b01878 Homogenous nanostructuration of molecularly imprinted...
Thumbnail S. Assavapanumat,  M. Ketkaew,  A. Kuhn, C.Wattanakit J. Am.Chem.Soc. 141 (2019) 18870(Front Cover) see also CNRS press release The enantioselective synthesis of chiral compounds is of crucial...
Thumbnail C. Wattanakit, A. Kuhn Chemistry-A European Journal (2019) in press The concept of encoding molecular information in bulk metals has been proposed over the past decade. The structure of various...