H. J. Ruigrok, G. Shahid, B. Goudeau, F. Poulletier de Gannes, E. Poque-Haro, A. Hurtier, I. Lagroye, P. Vacher, S. Arbault, N. Sojic, B. Veyret, Y. Percherancier

Biophysical Journal, 2017, 112, 87-98

Multiplexed bioluminescence resonance energy transfer (BRET) assays were developed tomonitor the activation of several functional transient receptor potential (TRP) channels in live cells and in real time.We probed both TRPV1 intramolecular rearrangements and its interaction with Calmodulin (CaM) under activation by chemical agonists and temperature. Our BRET study also confirmed that: (1) capsaicin and heat promoted distinct transitions, independently coupled to channel gating, and that (2) TRPV1 and Ca2+-bound CaM but not Ca2+-free CaM were preassociated in resting live cells, while capsaicin activation induced both the formation of more TRPV1/CaM complexes and conformational changes. The BRET assay, based on the interaction with Calmodulin, was successfully extended to TRPV3 and TRPV4 channels. We therefore developed a full-spectral three-color BRET assay for analyzing the specific activation of each of the three TRPV channels in a single sample. Such key improvement in BRET measurement paves the way for the simultaneous monitoring of independent biological pathways in live cells.

 2017 06

Dezest M., Bulteau A.L., Quinton D., Chavatte L., Le Béchec M., Arbault S., Salvayre A.N., Cousty S., Clément F.

PLOS One, 2017, 12(3)

Cold atmospheric pressure plasmas (CAPPs) are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS) are not the only actors involved in E. coli's death, electrical field and charged particles could play a significant role especially for He-O2 CAPP.

2017 34

Dezest M., Chavatte L., Bourdens M., Quinton D., Camus M., Garrigues L., Descargues P., Arbault S., Burlet-Schiltz O., Casteilla L., Clément F., Planat V., Bulteau A.L.

Scientific Reports, 2017, 7, 41163

Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.

2017 33